
Data Warehousing Critical Success Factors 

 

Dataventure.io © 2019 - This work is licensed under a Creative Commons Attribution 4.0 International License 1 
 
 

Data Warehousing Critical Success Factors 

 

Introduction 

I've been fortunate to have been part of some successful data warehouse projects, and some not 

so-successful ones. As you build out your reporting solution plan, allow for time for the 

unexpected, testing, performance tuning, and the like. Recognize that the longer the project lasts, 

the more the business will move away from the original requirements, and the data warehouse 

project must keep up. In addition to all this, keep in mind factors that are critical to a successful 

implementation: 

Scope 

Manage scope aggressively.  Implement only what is required.  It's OK to design a extensible 

pattern, but leave it at that. 

Listen to your users.  Know what they want out of the system and why.   

Delivering too much is fatal.  Don't try to design ahead of what the users want. You will be 

wrong.  Even your users will be wrong.  Commit to the hard requirements for the here and 

now.  Anything else is a gamble with no upside. At the same time, be ready to assimilate new 

hard requirements into the scope. Set expectations that new scope will increase timeframes and 

cost. 

It's a tough dichotomy because at once, you must maintain tight scope so you can deliver. Yet, if 

you deliver something that's no longer needed, that's bad also. Use your experience and 

relationship with the users to navigate the terrain. 

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Data Warehousing Critical Success Factors 

 

Dataventure.io © 2019 - This work is licensed under a Creative Commons Attribution 4.0 International License 2 
 
 

Design 

Design the simplest possible solution that still works.  Borrowing from Sun Tzu, the best 

reporting solution is the one that does not have to get implemented.  Aside from that, keep it 

simple. 

If the source application has adequate reporting capabilities, use them. 

If you have to build a data-based reporting solution, beware of making the data flow overly 

complicated.  The tendency is to normalize and rationalize vendors' data.  Too often that leads to 

complicated transformations and column mappings that require extensive testing. There will a 

corner case that you did not anticipate.   3rd Normal Form does us an injustice by guilting us into 

"good" design that users do not care about.  There's nothing wrong with denormalized data for 

the vast majority of use cases. If it takes a 100% of your brain to create the thing, you've got 

nothing left to figure things out when stuff goes wrong. 

If you find it necessary to create a star schema data model, keep the objects intuitive and 

relevant.  Make it so that the users can thumb through the data dictionary and recognize all the 

names (except for surrogate keys maybe). 

Make the data model follow standard data warehouse design.  Let fact tables be fact 

tables.  Dimension tables be dimension tables.  Create simple surrogate keys as primary keys on 

the dimensions.  Refer to the them as foreign keys from the fact tables.  Use simple naming 

conventions. Let there only be one degree of separation between dims and facts.  Question 

whether or not slow change dimensions are even necessary.  If queries are anchored in the fact 

tables, then dimensions can just be records.  Unless there is a business requirement stating 

otherwise, no one cares if the database stores every version of a dim in history. 

Forget the snowflake model.  It is death.  The leaf node dependencies force a limiter on 

concurrent processing.  It makes for really complicated transformation rules.   It may look cool 

hanging inside your cube, but it is death. 

Think carefully about the ETL model - push or pull.   In push, the data warehouse does not need 

to know about the source system.  However, the individual data extractors may not have enough 

context to send a complete picture.  In pull, the data warehouse has to know its source and know 

when data can be extracted.  But, it can grab all the data that it needs. 

Testing 

Use a set of repeatable test cases. Permute the inputs so that corner cases can be checked. If 

you're reporting daily, create a way to inject the test cases into the data. 

Agree on a method to reconcile the data.  The method must be fast and automated.  Think simple 

checksum. 

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Data Warehousing Critical Success Factors 

 

Dataventure.io © 2019 - This work is licensed under a Creative Commons Attribution 4.0 International License 3 
 
 

Some users will insist on parallel testing, where the new system runs along side the old system 

for some period of time.  This is fine as a supplemental test method.  However, you and your 

team will grow old trying to go live if parallel testing is your only approach. 

Performance 

First, know how much data is involved.  Next, know the capabilities of your infrastructure.  Then 

use that knowledge as constraints.  Minimize the total number of data hops.  Take measurements 

of your system’s throughput.  Use that as a benchmark to size your system.  Design for your 

constraints.  Set realistic expectations with your users.   

Don’t assume that throughput or response times will be optimal.  Count on the opposite.   

Conclusion 

Voice any concerns strongly and early. Don't remain quiet. If you're working with a vendor on a 

fixed price engagement and they won't accept any design changes because it will mess up their 

timeline, kick them out of the office. Whatever has been spent is a sunk cost. If the project has a 

bad smell, stop the whole thing and resolve the issues. 

 

 

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

